Learning Network Parameters in the ReLU Model

Rectified linear units, or ReLUs, have become a preferred activation function for artificial neural networks. In this paper we consider the problem of learning a generative model in the presence of nonlinearity (modeled by the ReLU functions). Given a set of signal vectors $\mathbf{y}^i \in \mathbb{R}^d, i =1, 2, \dots , n$, we aim to learn the network parameters, i.e., the $d\times k$ matrix $A$, under the model $\mathbf{y}^i = \mathrm{ReLU}(A\mathbf{c}^i +\mathbf{b})$, where $\mathbf{b}\in \mathbb{R}^d$ is a random bias vector, and {$\mathbf{c}^i \in \mathbb{R}^k$ are arbitrary unknown latent vectors}. We show that it is possible to recover the column space of $A$ within an error of $O(d)$ (in Frobenius norm) under certain conditions on the distribution of $\mathbf{b}$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here