Learning Neural Radiance Fields from Multi-View Geometry

24 Oct 2022  ·  Marco Orsingher, Paolo Zani, Paolo Medici, Massimo Bertozzi ·

We present a framework, called MVG-NeRF, that combines classical Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction. NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable volumetric rendering formulation that enables high-quality and geometry-aware novel view synthesis. However, the underlying geometry of the scene is not explicitly constrained during training, thus leading to noisy and incorrect results when extracting a mesh with marching cubes. To this end, we propose to leverage pixelwise depths and normals from a classical 3D reconstruction pipeline as geometric priors to guide NeRF optimization. Such priors are used as pseudo-ground truth during training in order to improve the quality of the estimated underlying surface. Moreover, each pixel is weighted by a confidence value based on the forward-backward reprojection error for additional robustness. Experimental results on real-world data demonstrate the effectiveness of this approach in obtaining clean 3D meshes from images, while maintaining competitive performances in novel view synthesis.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.