Learning Neural Representations for Network Anomaly Detection

This paper proposes latent representation models for improving network anomaly detection. Well-known anomaly detection algorithms often suffer from challenges posed by network data, such as high dimension and sparsity, and a lack of anomaly data for training, model selection, and hyperparameter tuning. Our approach is to introduce new regularizers to a classical autoencoder (AE) and a variational AE, which force normal data into a very tight area centered at the origin in the nonsaturating area of the bottleneck unit activations. These trained AEs on normal data will push normal points toward the origin, whereas anomalies, which differ from normal data, will be put far away from the normal region. The models are very different from common regularized AEs, sparse AE, and contractive AE,in which the regularized AEs tend to make their latent representation less sensitive to changes of the input data. The bottleneck feature space is now used as a new data representation. A number of one-class learning algorithms are used for evaluating the proposed models. The experiments testify that our models help these classifiers to perform efficiently and consistently on highdimensional and sparse network datasets, even with relatively few training points. More importantly, the models can minimize the effect of model selection on these classifiers since their performance is insensitive to a wide range of hyperparameter settings.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods