Learning neutrino effects in Cosmology with Convolutional Neural Networks

Measuring the sum of the three active neutrino masses, $M_\nu$, is one of the most important challenges in modern cosmology. Massive neutrinos imprint characteristic signatures on several cosmological observables in particular on the large-scale structure of the Universe. In order to maximize the information that can be retrieved from galaxy surveys, accurate theoretical predictions in the non-linear regime are needed. Currently, one way to achieve those predictions is by running cosmological numerical simulations. Unfortunately, producing those simulations requires high computational resources -- several hundred to thousand core-hours for each neutrino mass case. In this work, we propose a new method, based on a deep learning network, to quickly generate simulations with massive neutrinos from standard $\Lambda$CDM simulations without neutrinos. We computed multiple relevant statistical measures of deep-learning generated simulations, and conclude that our approach is an accurate alternative to the traditional N-body techniques. In particular the power spectrum is within $\simeq 6\%$ down to non-linear scales $k=0.7$~\rm h/Mpc. Finally, our method allows us to generate massive neutrino simulations 10,000 times faster than the traditional methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here