Learning Non-Parametric Basis Independent Models from Point Queries via Low-Rank Methods

7 Oct 2013  ·  Hemant Tyagi, Volkan Cevher ·

We consider the problem of learning multi-ridge functions of the form f(x) = g(Ax) from point evaluations of f. We assume that the function f is defined on an l_2-ball in R^d, g is twice continuously differentiable almost everywhere, and A \in R^{k \times d} is a rank k matrix, where k << d. We propose a randomized, polynomial-complexity sampling scheme for estimating such functions. Our theoretical developments leverage recent techniques from low rank matrix recovery, which enables us to derive a polynomial time estimator of the function f along with uniform approximation guarantees. We prove that our scheme can also be applied for learning functions of the form: f(x) = \sum_{i=1}^{k} g_i(a_i^T x), provided f satisfies certain smoothness conditions in a neighborhood around the origin. We also characterize the noise robustness of the scheme. Finally, we present numerical examples to illustrate the theoretical bounds in action.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here