Learning Powers of Poisson Binomial Distributions

18 Jul 2017  ·  Dimitris Fotakis, Vasilis Kontonis, Piotr Krysta, Paul Spirakis ·

We introduce the problem of simultaneously learning all powers of a Poisson Binomial Distribution (PBD). A PBD of order $n$ is the distribution of a sum of $n$ mutually independent Bernoulli random variables $X_i$, where $\mathbb{E}[X_i] = p_i$... The $k$'th power of this distribution, for $k$ in a range $[m]$, is the distribution of $P_k = \sum_{i=1}^n X_i^{(k)}$, where each Bernoulli random variable $X_i^{(k)}$ has $\mathbb{E}[X_i^{(k)}] = (p_i)^k$. The learning algorithm can query any power $P_k$ several times and succeeds in learning all powers in the range, if with probability at least $1- \delta$: given any $k \in [m]$, it returns a probability distribution $Q_k$ with total variation distance from $P_k$ at most $\epsilon$. We provide almost matching lower and upper bounds on query complexity for this problem. We first show a lower bound on the query complexity on PBD powers instances with many distinct parameters $p_i$ which are separated, and we almost match this lower bound by examining the query complexity of simultaneously learning all the powers of a special class of PBD's resembling the PBD's of our lower bound. We study the fundamental setting of a Binomial distribution, and provide an optimal algorithm which uses $O(1/\epsilon^2)$ samples. Diakonikolas, Kane and Stewart [COLT'16] showed a lower bound of $\Omega(2^{1/\epsilon})$ samples to learn the $p_i$'s within error $\epsilon$. The question whether sampling from powers of PBDs can reduce this sampling complexity, has a negative answer since we show that the exponential number of samples is inevitable. Having sampling access to the powers of a PBD we then give a nearly optimal algorithm that learns its $p_i$'s. To prove our two last lower bounds we extend the classical minimax risk definition from statistics to estimating functions of sequences of distributions. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here