Inferring Probabilistic Reward Machines from Non-Markovian Reward Processes for Reinforcement Learning

9 Jul 2021  ·  Taylor Dohmen, Noah Topper, George Atia, Andre Beckus, Ashutosh Trivedi, Alvaro Velasquez ·

The success of reinforcement learning in typical settings is predicated on Markovian assumptions on the reward signal by which an agent learns optimal policies. In recent years, the use of reward machines has relaxed this assumption by enabling a structured representation of non-Markovian rewards. In particular, such representations can be used to augment the state space of the underlying decision process, thereby facilitating non-Markovian reinforcement learning. However, these reward machines cannot capture the semantics of stochastic reward signals. In this paper, we make progress on this front by introducing probabilistic reward machines (PRMs) as a representation of non-Markovian stochastic rewards. We present an algorithm to learn PRMs from the underlying decision process and prove results around its correctness and convergence.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here