Learning Product Codebooks using Vector Quantized Autoencoders for Image Retrieval

12 Jul 2018  ·  Hanwei Wu, Markus Flierl ·

Vector-Quantized Variational Autoencoders (VQ-VAE)[1] provide an unsupervised model for learning discrete representations by combining vector quantization and autoencoders. In this paper, we study the use of VQ-VAE for representation learning for downstream tasks, such as image retrieval. We first describe the VQ-VAE in the context of an information-theoretic framework. We show that the regularization term on the learned representation is determined by the size of the embedded codebook before the training and it affects the generalization ability of the model. As a result, we introduce a hyperparameter to balance the strength of the vector quantizer and the reconstruction error. By tuning the hyperparameter, the embedded bottleneck quantizer is used as a regularizer that forces the output of the encoder to share a constrained coding space such that learned latent features preserve the similarity relations of the data space. In addition, we provide a search range for finding the best hyperparameter. Finally, we incorporate the product quantization into the bottleneck stage of VQ-VAE and propose an end-to-end unsupervised learning model for the image retrieval task. The product quantizer has the advantage of generating large-size codebooks. Fast retrieval can be achieved by using the lookup tables that store the distance between any pair of sub-codewords. State-of-the-art retrieval results are achieved by the learned codebooks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods