Learning Purified Feature Representations from Task-irrelevant Labels

22 Feb 2021  ·  Yinghui Li, Chen Wang, Yangning Li, Hai-Tao Zheng, Ying Shen ·

Learning an empirically effective model with generalization using limited data is a challenging task for deep neural networks. In this paper, we propose a novel learning framework called PurifiedLearning to exploit task-irrelevant features extracted from task-irrelevant labels when training models on small-scale datasets. Particularly, we purify feature representations by using the expression of task-irrelevant information, thus facilitating the learning process of classification. Our work is built on solid theoretical analysis and extensive experiments, which demonstrate the effectiveness of PurifiedLearning. According to the theory we proved, PurifiedLearning is model-agnostic and doesn't have any restrictions on the model needed, so it can be combined with any existing deep neural networks with ease to achieve better performance. The source code of this paper will be available in the future for reproducibility.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here