Learning Rate Perturbation: A Generic Plugin of Learning Rate Schedule towards Flatter Local Minima

25 Aug 2022  ·  Hengyu Liu, Qiang Fu, Lun Du, Tiancheng Zhang, Ge Yu, Shi Han, Dongmei Zhang ·

Learning rate is one of the most important hyper-parameters that has a significant influence on neural network training. Learning rate schedules are widely used in real practice to adjust the learning rate according to pre-defined schedules for fast convergence and good generalization. However, existing learning rate schedules are all heuristic algorithms and lack theoretical support. Therefore, people usually choose the learning rate schedules through multiple ad-hoc trials, and the obtained learning rate schedules are sub-optimal. To boost the performance of the obtained sub-optimal learning rate schedule, we propose a generic learning rate schedule plugin, called LEArning Rate Perturbation (LEAP), which can be applied to various learning rate schedules to improve the model training by introducing a certain perturbation to the learning rate. We found that, with such a simple yet effective strategy, training processing exponentially favors flat minima rather than sharp minima with guaranteed convergence, which leads to better generalization ability. In addition, we conduct extensive experiments which show that training with LEAP can improve the performance of various deep learning models on diverse datasets using various learning rate schedules (including constant learning rate).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here