Learning Representations of Missing Data for Predicting Patient Outcomes

12 Nov 2018  ·  Brandon Malone, Alberto Garcia-Duran, Mathias Niepert ·

Extracting actionable insight from Electronic Health Records (EHRs) poses several challenges for traditional machine learning approaches. Patients are often missing data relative to each other; the data comes in a variety of modalities, such as multivariate time series, free text, and categorical demographic information; important relationships among patients can be difficult to detect; and many others... In this work, we propose a novel approach to address these first three challenges using a representation learning scheme based on message passing. We show that our proposed approach is competitive with or outperforms the state of the art for predicting in-hospital mortality (binary classification), the length of hospital visits (regression) and the discharge destination (multiclass classification). read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here