Learning Rich Features from RGB-D Images for Object Detection and Segmentation

In this paper we study the problem of object detection for RGB-D images using semantically rich image and depth features. We propose a new geocentric embedding for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet