Learning Schatten--von Neumann Operators

29 Jan 2019  ·  Puoya Tabaghi, Maarten de Hoop, Ivan Dokmanić ·

We study the learnability of a class of compact operators known as Schatten--von Neumann operators. These operators between infinite-dimensional function spaces play a central role in a variety of applications in learning theory and inverse problems. We address the question of sample complexity of learning Schatten-von Neumann operators and provide an upper bound on the number of measurements required for the empirical risk minimizer to generalize with arbitrary precision and probability, as a function of class parameter $p$. Our results give generalization guarantees for regression of infinite-dimensional signals from infinite-dimensional data. Next, we adapt the representer theorem of Abernethy \emph{et al.} to show that empirical risk minimization over an a priori infinite-dimensional, non-compact set, can be converted to a convex finite dimensional optimization problem over a compact set. In summary, the class of $p$-Schatten--von Neumann operators is probably approximately correct (PAC)-learnable via a practical convex program for any $p < \infty$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here