Learning Semantic Relationships for Better Action Retrieval in Images

Human actions capture a wide variety of interactions between people and objects. As a result, the set of possible actions is extremely large and it is difficult to obtain sufficient training examples for all actions. However, we could compensate for this sparsity in supervision by leveraging the rich semantic relationship between different actions. A single action is often composed of other smaller actions and is exclusive of certain others. We need a method which can reason about such relationships and extrapolate unobserved actions from known actions. Hence, we propose a novel neural network framework which jointly extracts the relationship between actions and uses them for training better action retrieval models. Our model incorporates linguistic, visual and logical consistency based cues to effectively identify these relationships. We train and test our model on a largescale image dataset of human actions. We show a significant improvement in mean AP compared to different baseline methods including the HEX-graph approach from Deng et al.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here