Learning Semantically Meaningful Representations Through Embodiment

25 Sep 2019  ·  Viviane Clay, Peter König, Kai-Uwe Kühnberger, Gordon Pipa ·

How do humans acquire a meaningful understanding of the world with little to no supervision or semantic labels provided by the environment? Here we investigate embodiment and a closed loop between action and perception as one key component in this process. We take a close look at the representations learned by a deep reinforcement learning agent that is trained with visual and vector observations collected in a 3D environment with sparse rewards. We show that this agent learns semantically meaningful and stable representations of its environment without receiving any semantic labels. Our results show that the agent learns to represent the action relevant information extracted from pixel input in a wide variety of sparse activation patterns. The quality of the representations learned shows the strength of embodied learning and its advantages over fully supervised approaches with regards to robustness and generalizability.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here