Learning Sentence Representations over Tree Structures for Target-Dependent Classification
Target-dependent classification tasks, such as aspect-level sentiment analysis, perform fine-grained classifications towards specific targets. Semantic compositions over tree structures are promising for such tasks, as they can potentially capture long-distance interactions between targets and their contexts. However, previous work that operates on tree structures resorts to syntactic parsers or Treebank annotations, which are either subject to noise in informal texts or highly expensive to obtain. To address above issues, we propose a reinforcement learning based approach, which automatically induces target-specific sentence representations over tree structures. The underlying model is a RNN encoder-decoder that explores possible binary tree structures and a reward mechanism that encourages structures that improve performances on downstream tasks. We evaluate our approach on two benchmark tasks: firm-specific cumulative abnormal return prediction (based on formal news texts) and aspect-level sentiment analysis (based on informal social media texts). Experimental results show that our model gives superior performances compared to previous work that operates on parsed trees. Moreover, our approach gives some intuitions on how target-specific sentence representations can be achieved from its word constituents.
PDF Abstract