Learning Simple Auctions

11 Apr 2016  ·  Jamie Morgenstern, Tim Roughgarden ·

We present a general framework for proving polynomial sample complexity bounds for the problem of learning from samples the best auction in a class of "simple" auctions. Our framework captures all of the most prominent examples of "simple" auctions, including anonymous and non-anonymous item and bundle pricings, with either a single or multiple buyers. The technique we propose is to break the analysis of auctions into two natural pieces. First, one shows that the set of allocation rules have large amounts of structure; second, fixing an allocation on a sample, one shows that the set of auctions agreeing with this allocation on that sample have revenue functions with low dimensionality. Our results effectively imply that whenever it's possible to compute a near-optimal simple auction with a known prior, it is also possible to compute such an auction with an unknown prior (given a polynomial number of samples).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here