Learning Sparse Sharing Architectures for Multiple Tasks

12 Nov 2019Tianxiang SunYunfan ShaoXiaonan LiPengfei LiuHang YanXipeng QiuXuanjing Huang

Most existing deep multi-task learning models are based on parameter sharing, such as hard sharing, hierarchical sharing, and soft sharing. How choosing a suitable sharing mechanism depends on the relations among the tasks, which is not easy since it is difficult to understand the underlying shared factors among these tasks... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet