Learning spectrograms with convolutional spectral kernels

23 May 2019Zheyang ShenMarkus HeinonenSamuel Kaski

We introduce the convolutional spectral kernel (CSK), a novel family of non-stationary, nonparametric covariance kernels for Gaussian process (GP) models, derived from the convolution between two imaginary radial basis functions. We present a principled framework to interpret CSK, as well as other deep probabilistic models, using approximated Fourier transform, yielding a concise representation of input-frequency spectrogram... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.