Learning Stochastic Behaviour of Aggregate Data

10 Feb 2020Shaojun MaShu LiuHongyuan ZhaHaomin Zhou

Learning nonlinear dynamics of aggregate data is a challenging problem since the full trajectory of each individual is not observable, namely, the individual observed at one time point may not be observed at next time point. One class of existing work investigate such dynamics by requiring complete longitudinal individual-level trajectories... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet