Learning Stochastic Recurrent Networks

27 Nov 2014 Justin Bayer Christian Osendorfer

Leveraging advances in variational inference, we propose to enhance recurrent neural networks with latent variables, resulting in Stochastic Recurrent Networks (STORNs). The model i) can be trained with stochastic gradient methods, ii) allows structured and multi-modal conditionals at each time step, iii) features a reliable estimator of the marginal likelihood and iv) is a generalisation of deterministic recurrent neural networks... (read more)

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet