Learning Structural Similarity of User Interface Layouts using Graph Networks

ECCV 2020  ·  Dipu Manandhar, Dan Ruta, John Collomosse ·

We propose a novel representation learning technique for measuring the similarity of user interface designs. A triplet network is used to learn a search embedding for layout similarity, with a hybrid encoder-decoder backbone comprising a graph convolutional network (GCN) and convolutional decoder (CNN)... The properties of interface components and their spatial relationships are encoded via a graph which also models the containment (nesting) relationships of interface components. We supervise the training of a dual reconstruction and pair-wise loss using an auxiliary measure of layout similarity based on intersection over union (IoU) distance. The resulting embedding is shown to exceed state of the art performance for visual search of user interface layouts over the public Rico dataset, and an auto-annotated dataset of interface layouts collected from the web. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods