Learning Surrogate Losses

24 May 2019  ·  Josif Grabocka, Randolf Scholz, Lars Schmidt-Thieme ·

The minimization of loss functions is the heart and soul of Machine Learning. In this paper, we propose an off-the-shelf optimization approach that can minimize virtually any non-differentiable and non-decomposable loss function (e.g. Miss-classification Rate, AUC, F1, Jaccard Index, Mathew Correlation Coefficient, etc.) seamlessly. Our strategy learns smooth relaxation versions of the true losses by approximating them through a surrogate neural network. The proposed loss networks are set-wise models which are invariant to the order of mini-batch instances. Ultimately, the surrogate losses are learned jointly with the prediction model via bilevel optimization. Empirical results on multiple datasets with diverse real-life loss functions compared with state-of-the-art baselines demonstrate the efficiency of learning surrogate losses.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here