Learning temporal evolution of probability distribution with Recurrent Neural Network

We propose to tackle a time series regression problem by computing temporal evolution of a probability density function to provide a probabilistic forecast. A Recurrent Neural Network (RNN) based model is employed to learn a nonlinear operator for temporal evolution of a probability density function. We use a softmax layer for a numerical discretization of a smooth probability density functions, which transforms a function approximation problem to a classification task. Explicit and implicit regularization strategies are introduced to impose a smoothness condition on the estimated probability distribution. A Monte Carlo procedure to compute the temporal evolution of the distribution for a multiple-step forecast is presented. The evaluation of the proposed algorithm on three synthetic and two real data sets shows advantage over the compared baselines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods