Learning the Localization Function: Machine Learning Approach to Fingerprinting Localization

21 Mar 2018  ·  Linchen Xiao, Arash Behboodi, Rudolf Mathar ·

Considered as a data-driven approach, Fingerprinting Localization Solutions (FPSs) enjoy huge popularity due to their good performance and minimal environment information requirement. This papers addresses applications of artificial intelligence to solve two problems in Received Signal Strength Indicator (RSSI) based FPS, first the cumbersome training database construction and second the extrapolation of fingerprinting algorithm for similar buildings with slight environmental changes... After a concise overview of deep learning design techniques, two main techniques widely used in deep learning are exploited for the above mentioned issues namely data augmentation and transfer learning. We train a multi-layer neural network that learns the mapping from the observations to the locations. A data augmentation method is proposed to increase the training database size based on the structure of RSSI measurements and hence reducing effectively the amount of training data. Then it is shown experimentally how a model trained for a particular building can be transferred to a similar one by fine tuning with significantly smaller training numbers. The paper implicitly discusses the new guidelines to consider about deep learning designs when they are employed in a new application context. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here