Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning

17 Sep 2018Jun FengHeng LiMinlie HuangShichen LiuWenwu OuZhirong WangXiaoyan Zhu

Ranking is a fundamental and widely studied problem in scenarios such as search, advertising, and recommendation. However, joint optimization for multi-scenario ranking, which aims to improve the overall performance of several ranking strategies in different scenarios, is rather untouched... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet