Learning to Counterfactually Explain Recommendations

17 Nov 2022  ·  Yuanshun Yao, Chong Wang, Hang Li ·

Recommender system practitioners are facing increasing pressure to explain recommendations. We explore how to explain recommendations using counterfactual logic, i.e. "Had you not interacted with the following items, we would not recommend it." Compared to the traditional explanation logic, counterfactual explanations are easier to understand, more technically verifiable, and more informative in terms of giving users control over recommendations. The major challenge of generating such explanations is the computational cost because it requires repeatedly retraining the models to obtain the effect on a recommendation caused by the absence of user history. We propose a learning-based framework to generate counterfactual explanations. The key idea is to train a surrogate model to learn the effect of removing a subset of user history on the recommendation. To this end, we first artificially simulate the counterfactual outcomes on the recommendation after deleting subsets of history. Then we train a surrogate model to learn the mapping between a history deletion and the corresponding change of the recommendation caused by the deletion. Finally, to generate an explanation, we find the history subset predicted by the surrogate model that is most likely to remove the recommendation. Through offline experiments and online user studies, we show our method, compared to baselines, can generate explanations that are more counterfactually valid and more satisfactory considered by users.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here