Learning to Factor Policies and Action-Value Functions: Factored Action Space Representations for Deep Reinforcement learning

20 May 2017  ·  Sahil Sharma, Aravind Suresh, Rahul Ramesh, Balaraman Ravindran ·

Deep Reinforcement Learning (DRL) methods have performed well in an increasing numbering of high-dimensional visual decision making domains. Among all such visual decision making problems, those with discrete action spaces often tend to have underlying compositional structure in the said action space. Such action spaces often contain actions such as go left, go up as well as go diagonally up and left (which is a composition of the former two actions). The representations of control policies in such domains have traditionally been modeled without exploiting this inherent compositional structure in the action spaces. We propose a new learning paradigm, Factored Action space Representations (FAR) wherein we decompose a control policy learned using a Deep Reinforcement Learning Algorithm into independent components, analogous to decomposing a vector in terms of some orthogonal basis vectors. This architectural modification of the control policy representation allows the agent to learn about multiple actions simultaneously, while executing only one of them. We demonstrate that FAR yields considerable improvements on top of two DRL algorithms in Atari 2600: FARA3C outperforms A3C (Asynchronous Advantage Actor Critic) in 9 out of 14 tasks and FARAQL outperforms AQL (Asynchronous n-step Q-Learning) in 9 out of 13 tasks.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.