Learning to Generalize to Unseen Tasks with Bilevel Optimization

5 Aug 2019Hayeon LeeDonghyun NaHae Beom LeeSung Ju Hwang

Recent metric-based meta-learning approaches, which learn a metric space that generalizes well over combinatorial number of different classification tasks sampled from a task distribution, have been shown to be effective for few-shot classification tasks of unseen classes. They are often trained with episodic training where they iteratively train a common metric space that reduces distance between the class representatives and instances belonging to each class, over large number of episodes with random classes... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet