Learning to Generate Word Representations using Subword Information

Distributed representations of words play a major role in the field of natural language processing by encoding semantic and syntactic information of words. However, most existing works on learning word representations typically regard words as individual atomic units and thus are blind to subword information in words. This further gives rise to a difficulty in representing out-of-vocabulary (OOV) words. In this paper, we present a character-based word representation approach to deal with this limitation. The proposed model learns to generate word representations from characters. In our model, we employ a convolutional neural network and a highway network over characters to extract salient features effectively. Unlike previous models that learn word representations from a large corpus, we take a set of pre-trained word embeddings and generalize it to word entries, including OOV words. To demonstrate the efficacy of the proposed model, we perform both an intrinsic and an extrinsic task which are word similarity and language modeling, respectively. Experimental results show clearly that the proposed model significantly outperforms strong baseline models that regard words or their subwords as atomic units. For example, we achieve as much as 18.5{\%} improvement on average in perplexity for morphologically rich languages compared to strong baselines in the language modeling task.

PDF Abstract COLING 2018 PDF COLING 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods