Learning to guide task and motion planning using score-space representation

26 Jul 2018  ·  Beomjoon Kim, Zi Wang, Leslie Pack Kaelbling, Tomas Lozano-Perez ·

In this paper, we propose a learning algorithm that speeds up the search in task and motion planning problems. Our algorithm proposes solutions to three different challenges that arise in learning to improve planning efficiency: what to predict, how to represent a planning problem instance, and how to transfer knowledge from one problem instance to another. We propose a method that predicts constraints on the search space based on a generic representation of a planning problem instance, called score-space, where we represent a problem instance in terms of the performance of a set of solutions attempted so far. Using this representation, we transfer knowledge, in the form of constraints, from previous problems based on the similarity in score space. We design a sequential algorithm that efficiently predicts these constraints, and evaluate it in three different challenging task and motion planning problems. Results indicate that our approach performs orders of magnitudes faster than an unguided planner

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here