Learning to Hash with Binary Reconstructive Embeddings

NeurIPS 2009  ·  Brian Kulis, Trevor Darrell ·

Fast retrieval methods are increasingly critical for many large-scale analysis tasks, and there have been several recent methods that attempt to learn hash functions for fast and accurate nearest neighbor searches. In this paper, we develop an algorithm for learning hash functions based on explicitly minimizing the reconstruction error between the original distances and the Hamming distances of the corresponding binary embeddings. We develop a scalable coordinate-descent algorithm for our proposed hashing objective that is able to efficiently learn hash functions in a variety of settings. Unlike existing methods such as semantic hashing and spectral hashing, our method is easily kernelized and does not require restrictive assumptions about the underlying distribution of the data. We present results over several domains to demonstrate that our method outperforms existing state-of-the-art techniques.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here