Learning to Optimize via Information-Directed Sampling

NeurIPS 2014  ·  Daniel Russo, Benjamin Van Roy ·

We propose information-directed sampling -- a new approach to online optimization problems in which a decision-maker must balance between exploration and exploitation while learning from partial feedback. Each action is sampled in a manner that minimizes the ratio between squared expected single-period regret and a measure of information gain: the mutual information between the optimal action and the next observation. We establish an expected regret bound for information-directed sampling that applies across a very general class of models and scales with the entropy of the optimal action distribution. We illustrate through simple analytic examples how information-directed sampling accounts for kinds of information that alternative approaches do not adequately address and that this can lead to dramatic performance gains. For the widely studied Bernoulli, Gaussian, and linear bandit problems, we demonstrate state-of-the-art simulation performance.

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here