Learning to Pass Expectation Propagation Messages

Expectation Propagation (EP) is a popular approximate posterior inference algorithm that often provides a fast and accurate alternative to sampling-based methods. However, while the EP framework in theory allows for complex non-Gaussian factors, there is still a significant practical barrier to using them within EP, because doing so requires the implementation of message update operators, which can be difficult and require hand-crafted approximations... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet