Learning to Reason With Adaptive Computation

24 Oct 2016Mark NeumannPontus StenetorpSebastian Riedel

Multi-hop inference is necessary for machine learning systems to successfully solve tasks such as Recognising Textual Entailment and Machine Reading. In this work, we demonstrate the effectiveness of adaptive computation for learning the number of inference steps required for examples of different complexity and that learning the correct number of inference steps is difficult... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet