Learning to Reconstruct High-quality 3D Shapes with Cascaded Fully Convolutional Networks

We present a data-driven approach to reconstructing high-resolution and detailed volumetric representations of 3D shapes. Although well studied, algorithms for volumetric fusion from multi-view depth scans are still prone to scanning noise and occlusions, making it hard to obtain high-fidelity 3D reconstructions. In this paper, inspired by recent advances in efficient 3D deep learning techniques, we introduce a novel cascaded 3D convolutional network architecture, which learns to reconstruct implicit surface representations from noisy and incomplete depth maps in a progressive, coarse-to-fine manner. To this end, we also develop an algorithm for end-to-end training of the proposed cascaded structure. Qualitative and quantitative experimental results on both simulated and real-world datasets demonstrate that the presented approach outperforms existing state-of-the-art work in terms of quality and fidelity of reconstructed models.

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here