Learning to Recover Sparse Signals

In compressed sensing, a primary problem to solve is to reconstruct a high dimensional sparse signal from a small number of observations. In this work, we develop a new sparse signal recovery algorithm using reinforcement learning (RL) and Monte CarloTree Search (MCTS). Similarly to orthogonal matching pursuit (OMP), our RL+MCTS algorithm chooses the support of the signal sequentially. The key novelty is that the proposed algorithm learns how to choose the next support as opposed to following a pre-designed rule as in OMP. Empirical results are provided to demonstrate the superior performance of the proposed RL+MCTS algorithm over existing sparse signal recovery algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here