Learning to Represent Programs with Property Signatures

ICLR 2020  ·  Augustus Odena, Charles Sutton ·

We introduce the notion of property signatures, a representation for programs and program specifications meant for consumption by machine learning algorithms. Given a function with input type $\tau_{in}$ and output type $\tau_{out}$, a property is a function of type: $(\tau_{in}, \tau_{out}) \rightarrow \texttt{Bool}$ that (informally) describes some simple property of the function under consideration. For instance, if $\tau_{in}$ and $\tau_{out}$ are both lists of the same type, one property might ask `is the input list the same length as the output list?'. If we have a list of such properties, we can evaluate them all for our function to get a list of outputs that we will call the property signature. Crucially, we can `guess' the property signature for a function given only a set of input/output pairs meant to specify that function. We discuss several potential applications of property signatures and show experimentally that they can be used to improve over a baseline synthesizer so that it emits twice as many programs in less than one-tenth of the time.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here