Learning to Route Efficiently with End-to-End Feedback: The Value of Networked Structure

24 Oct 2018  ·  Ruihao Zhu, Eytan Modiano ·

We introduce efficient algorithms which achieve nearly optimal regrets for the problem of stochastic online shortest path routing with end-to-end feedback. The setting is a natural application of the combinatorial stochastic bandits problem, a special case of the linear stochastic bandits problem. We show how the difficulties posed by the large scale action set can be overcome by the networked structure of the action set. Our approach presents a novel connection between bandit learning and shortest path algorithms. Our main contribution is an adaptive exploration algorithm with nearly optimal instance-dependent regret for any directed acyclic network. We then modify it so that nearly optimal worst case regret is achieved simultaneously. Driven by the carefully designed Top-Two Comparison (TTC) technique, the algorithms are efficiently implementable. We further conduct extensive numerical experiments to show that our proposed algorithms not only achieve superior regret performances, but also reduce the runtime drastically.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here