Learning To Segment Dominant Object Motion From Watching Videos

28 Nov 2021  ·  Sahir Shrestha, Mohammad Ali Armin, Hongdong Li, Nick Barnes ·

Existing deep learning based unsupervised video object segmentation methods still rely on ground-truth segmentation masks to train. Unsupervised in this context only means that no annotated frames are used during inference. As obtaining ground-truth segmentation masks for real image scenes is a laborious task, we envision a simple framework for dominant moving object segmentation that neither requires annotated data to train nor relies on saliency priors or pre-trained optical flow maps. Inspired by a layered image representation, we introduce a technique to group pixel regions according to their affine parametric motion. This enables our network to learn segmentation of the dominant foreground object using only RGB image pairs as input for both training and inference. We establish a baseline for this novel task using a new MovingCars dataset and show competitive performance against recent methods that require annotated masks to train.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here