Learning to Understand Image Blur

While many approaches have been proposed to estimate and remove blur in a photo, few efforts were made to have an algorithm automatically understand the blur desirability: whether the blur is desired or not, and how it affects the quality of the photo. Such a task not only relies on low-level visual features to identify blurry regions, but also requires high-level understanding of the image content as well as user intent during photo capture. In this paper, we propose a unified framework to estimate a spatially-varying blur map and understand its desirability in terms of image quality at the same time. In particular, we use a dilated fully convolutional neural network with pyramid pooling and boundary refinement layers to generate high-quality blur response maps. If blur exists, we classify its desirability to three levels ranging from good to bad, by distilling high-level semantics and learning an attention map to adaptively localize the important content in the image. The whole framework is end-to-end jointly trained with both supervisions of pixel-wise blur responses and image-wise blur desirability levels. Considering the limitations of existing image blur datasets, we collected a new large-scale dataset with both annotations to facilitate training. The proposed methods are extensively evaluated on two datasets and demonstrate state-of-the-art performance on both tasks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here