Learning Transferable Kinematic Dictionary for 3D Human Pose and Shape Reconstruction

2 Apr 2021  ·  Ze Ma, Yifan Yao, Pan Ji, Chao Ma ·

Estimating 3D human pose and shape from a single image is highly under-constrained. To address this ambiguity, we propose a novel prior, namely kinematic dictionary, which explicitly regularizes the solution space of relative 3D rotations of human joints in the kinematic tree. Integrated with a statistical human model and a deep neural network, our method achieves end-to-end 3D reconstruction without the need of using any shape annotations during the training of neural networks. The kinematic dictionary bridges the gap between in-the-wild images and 3D datasets, and thus facilitates end-to-end training across all types of datasets. The proposed method achieves competitive results on large-scale datasets including Human3.6M, MPI-INF-3DHP, and LSP, while running in real-time given the human bounding boxes.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here