Learning User Preferences via Reinforcement Learning with Spatial Interface Valuing

2 Feb 2019  ·  Miguel Alonso Jr ·

Interactive Machine Learning is concerned with creating systems that operate in environments alongside humans to achieve a task. A typical use is to extend or amplify the capabilities of a human in cognitive or physical ways, requiring the machine to adapt to the users' intentions and preferences. Often, this takes the form of a human operator providing some type of feedback to the user, which can be explicit feedback, implicit feedback, or a combination of both. Explicit feedback, such as through a mouse click, carries a high cognitive load. The focus of this study is to extend the current state of the art in interactive machine learning by demonstrating that agents can learn a human user's behavior and adapt to preferences with a reduced amount of explicit human feedback in a mixed feedback setting. The learning agent perceives a value of its own behavior from hand gestures given via a spatial interface. This feedback mechanism is termed Spatial Interface Valuing. This method is evaluated experimentally in a simulated environment for a grasping task using a robotic arm with variable grip settings. Preliminary results indicate that learning agents using spatial interface valuing can learn a value function mapping spatial gestures to expected future rewards much more quickly as compared to those same agents just receiving explicit feedback, demonstrating that an agent perceiving feedback from a human user via a spatial interface can serve as an effective complement to existing approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here