Learning Visual Storylines with Skipping Recurrent Neural Networks

14 Apr 2016  ·  Gunnar A. Sigurdsson, Xinlei Chen, Abhinav Gupta ·

What does a typical visit to Paris look like? Do people first take photos of the Louvre and then the Eiffel Tower? Can we visually model a temporal event like "Paris Vacation" using current frameworks? In this paper, we explore how we can automatically learn the temporal aspects, or storylines of visual concepts from web data. Previous attempts focus on consecutive image-to-image transitions and are unsuccessful at recovering the long-term underlying story. Our novel Skipping Recurrent Neural Network (S-RNN) model does not attempt to predict each and every data point in the sequence, like classic RNNs. Rather, S-RNN uses a framework that skips through the images in the photo stream to explore the space of all ordered subsets of the albums via an efficient sampling procedure. This approach reduces the negative impact of strong short-term correlations, and recovers the latent story more accurately. We show how our learned storylines can be used to analyze, predict, and summarize photo albums from Flickr. Our experimental results provide strong qualitative and quantitative evidence that S-RNN is significantly better than other candidate methods such as LSTMs on learning long-term correlations and recovering latent storylines. Moreover, we show how storylines can help machines better understand and summarize photo streams by inferring a brief personalized story of each individual album.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here