Learning with Recursive Perceptual Representations

Linear Support Vector Machines (SVMs) have become very popular in vision as part of state-of-the-art object recognition and other classification tasks but require high dimensional feature spaces for good performance. Deep learning methods can find more compact representations but current methods employ multilayer perceptrons that require solving a difficult, non-convex optimization problem. We propose a deep non-linear classifier whose layers are SVMs and which incorporates random projection as its core stacking element. Our method learns layers of linear SVMs recursively transforming the original data manifold through a random projection of the weak prediction computed from each layer. Our method scales as linear SVMs, does not rely on any kernel computations or nonconvex optimization, and exhibits better generalization ability than kernel-based SVMs. This is especially true when the number of training samples is smaller than the dimensionality of data, a common scenario in many real-world applications. The use of random projections is key to our method, as we show in the experiments section, in which we observe a consistent improvement over previous --often more complicated-- methods on several vision and speech benchmarks.

PDF Abstract

Datasets


Results from the Paper


Task Dataset Model Metric Name Metric Value Global Rank Benchmark
Image Classification CIFAR-10 Learning with Recursive Perceptual Representations Percentage correct 79.7 # 216

Methods


No methods listed for this paper. Add relevant methods here