Least Action Principles and Well-Posed Learning Problems

4 Jul 2019Alessandro BettiMarco Gori

Machine Learning algorithms are typically regarded as appropriate optimization schemes for minimizing risk functions that are constructed on the training set, which conveys statistical flavor to the corresponding learning problem. When the focus is shifted on perception, which is inherently interwound with time, recent alternative formulations of learning have been proposed that rely on the principle of Least Cognitive Action, which very much reminds us of the Least Action Principle in mechanics... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet