LeSpell - A Multi-Lingual Benchmark Corpus of Spelling Errors to Develop Spellchecking Methods for Learner Language

Spellchecking text written by language learners is especially challenging because errors made by learners differ both quantitatively and qualitatively from errors made by already proficient learners. We introduce LeSpell, a multi-lingual (English, German, Italian, and Czech) evaluation data set of spelling mistakes in context that we compiled from seven underlying learner corpora. Our experiments show that existing spellcheckers do not work well with learner data. Thus, we introduce a highly customizable spellchecking component for the DKPro architecture, which improves performance in many settings.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here