Less data is more: Selecting informative and diverse subsets with balancing constraints

Deep learning has yielded extraordinary results in vision and natural language processing, but this achievement comes at a cost. Most models require enormous resources during training, both in terms of computation and in human labeling effort. We show that we can identify informative and diverse subsets of data that lead to deep learning models with similar performance as the ones trained with the original dataset. Prior methods have exploited diversity and uncertainty in submodular objective functions for choosing subsets. In addition to these measures, we show that balancing constraints on predicted class labels and decision boundaries are beneficial. We propose a novel formulation of these constraints using matroids, an algebraic structure that generalizes linear independence in vector spaces, and present an efficient greedy algorithm with constant approximation guarantees. We outperform competing baselines on standard classification datasets such as CIFAR-10, CIFAR-100, ImageNet, as well as long-tailed datasets such as CIFAR-100-LT.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here