Preference Consistency Matters: Enhancing Preference Learning in Language Models with Automated Self-Curation of Training Corpora

23 Aug 2024  ·  Joonho Lee, JuYoun Son, Juree Seok, Wooseok Jang, Yeong-Dae Kwon ·

Inconsistent annotations in training corpora, particularly within preference learning datasets, pose challenges in developing advanced language models. These inconsistencies often arise from variability among annotators and inherent multi-dimensional nature of the preferences. To address these issues, we introduce a self-curation method that preprocesses annotated datasets by leveraging proxy models trained directly on them. Our method enhances preference learning by automatically detecting and selecting consistent annotations. We validate the proposed approach through extensive instruction-following tasks, demonstrating performance improvements of up to 33\% across various learning algorithms and proxy capabilities. This work offers a straightforward and reliable solution to address preference inconsistencies without relying on heuristics, serving as an initial step toward the development of more advanced preference learning methodologies. Code is available at https://github.com/Self-Curation/ .

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here