Leveraged Mel Spectrograms Using Harmonic and Percussive Components in Speech Emotion Recognition

Speech Emotion Recognition (SER) affective technology enables the intelligent embedded devices to interact with sensitivity. Similarly, call centre employees recognise customers’ emotions from their pitch, energy, and tone of voice so as to modify their speech for a high-quality interaction with customers. This work explores, for the first time, the effects of the harmonic and percussive components of Mel spectrograms in SER. We attempt to leverage the Mel spectrogram by decomposing distinguishable acoustic features for exploitation in our proposed architecture, which includes a novel feature map generator algorithm, a CNN-based network feature extractor and a multi-layer perceptron (MLP) classifier. This study specifically focuses on effective data augmentation techniques for building an enriched hybrid-based feature map. This process results in a function that outputs a 2D image so that it can be used as input data for a pre-trained CNN-VGG16 feature extractor. Furthermore, we also investigate other acoustic features such as MFCCs, chromagram, spectral contrast, and the tonnetz to assess our proposed framework. A test accuracy of 92.79% on the Berlin EMO-DB database is achieved. Our result is higher than previous works using CNN-VGG16.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here